Wednesday, February 22, 2012

--pre-vent bronchial dilator--

    i recently came up with a simple way to eliminate asthma, from an epiphany, about my childhood( the device should cure, or reduce, it's effects on a patient), the apparatus is still in the development stages( a pocket-sized, powerful tool, to eliminate a serious problem)...

                                --the concept is simple, and i believe it to be sound--


 the "pre-vent bronchial dilator"--

     the idea is not complex in nature, if a person has bronchial constriction, from exposure to allergens that trigger an airway constriction( response), a solution must be found, to ensure a good( viable), diameter of the bronchial tubes, thus maintaining proper air-flow...

  --to accomplish this, i believe looking at the bronchial diameter in numbers, will be of great use--


the issue--

    before exposure to an allergen, the diameter of a person's bronchi are "20mm"( random number), after the person's body constricts the bronchi( from exposure), to stop the flow of offending air particles( allergens), the diameter is "10mm", thus an inadequate air-flow, and discomfort/poor breathing, results...


conclusion--

     i suggest, that if the airway( bronchi), are enlarged to "30mm"( via use of the "bronchial dilator"), that, although the body will still react to the negative stimuli( allergen), by contracting the bronchi "10mm", the air-flow will remain good/viable( a value of 20mm), as 30mm - 10mm( constriction from allergen exposure) = 20mm( ideal bronchial airway diameter)--


   example--

               (mm)
         (non-prevent)                                                             (mm)
        (using patient's)                      (mm)                        (total allergic)
      (bronchi diameter)          (bronchi diameter)            (constriction of)
      (before exposure)    -       (after exposure)     =      (airway diameter)
                 20                -                   10               =                10

                 (mm)                     
         (patient bronchi)                  (mm)                            (mm)
       (diameter that uses)          (total allergic)              (pre-vent user's)
        (pre-vent dilator)           (constriction of)         (bronchial diameter)
       (before exposure)   -     (airway diameter)  =      (after exposure)           (a good)
                30                  -                10               =              20                (air-flow diameter)


     to accomplish the enlargement of the bronchi, i feel that a simple mouthpiece could be constructed, that has an aperture, to restrict flow( like a trumpet's mouthpiece, a harmonica, or a kazoo has, that a child plays)... a good model to demonstrate this concept, is to have a patient blow up a balloon, and then have a doctor, or nurse, squeeze the balloon's sides, while they inflate it, causing a slight back-pressure, on the bronchial tubes, and enlarging them( stretching), a small amount--

    walking, while breathing in through the nose, and out through the mouth, with "pursed lips"( holding the mouth slightly closed, until a pressure is felt in the cheeks, while exhaling), will also produce bronchial enlargement, from the back-pressure against the bronchial tubes being produced--

  i enjoy the walking procedure best( for myself), although i imagine the sight is a tad silly for others to see...the trade-off is acceptable( less cute...more able), perhaps i look like "brando" when i do it??( i have no data for this conclusion at this time)--

  i plan to make a simple pocket-sized device, for a friend, from a diving snorkel, that has changeable apertures, so the device can be "dialed-in", to the specific needs of the patient/person using it--

          --i will post a photo of the completed device as soon as i am able--


      

Sunday, February 12, 2012

--crazy thought about cerebral palsy treatment--


crazy thought--

      i saw an advertisement today about raising money for cerebral palsy, a noble cause, i had a wild thought about the disease, at that moment, i was thinking that the problem in a patient with cerebral palsy, could lie in the "hippo-campus", and that the two sides of the person's brain, are not communicating well...  

       so poorly in fact, that the body, shuts down, both, communications with one side of the body( the least dominant, or opposite, of the hand a person naturally writes with), and also, nutrient delivery, to that side of the body...i feel this would cause co-ordination issues for the person, and poor growth of limbs( on the affected side), from the body doing a complete shut-down, of that side of the body--

the heart of the matter--

    left handed people are considered "right brained", and the opposite is thought to be true, of those whom are right handed...but nutrients are still sent to the sides of the body that are not dominant, in healthy subjects--

    i suggest, a cerebral palsy patient has a full( complete shut-down of one side of their body), from a malfunctioning "hippo-campus", allowing  low communication to the other hemisphere of the brain, or not enough, causing the full shut-down of supplies( oxygen, and nutrients), to the limbs on the affected side of the body( as the brain has stopped seeing them as viable, or not there at all), causing dexterity to be low, on the the non-dominant side of the body--

an epiphany--

   if this crazy idea had any merit at all, a person with this condition, caught in the early stages, might respond to things that re-develop the "hippo-campus", like a "kaleidoscope", or other means( i hear Albert Einstein liked to look through something that caused the right, and left sides of the brain, to work together)...perhaps dexterity drills, to cause ambidextrous abilities, might be slightly curative...anyway, crazy idea...thought i would write it down--

   also, i believe having the person learn to write with their non-dominant hand, immediately after diagnosis, could be of use, to work the "hippo-campus", as well as wearing an eye-patch over the dominant eye, and kicking a soccer ball around( with only the non-dominant leg), to re-establish communication, and nutrient enrichment, to the affected side of the body...i hope this concept is of use, in some small way, to physicians who treat this ailment--

  a word of caution--

  deploying therapy that separates the left and right sides of the brain( hypnosis), when the subject is very young, and not fully developed physically( a child), could unintentionally induce this ailment( cerebral palsy), greatly harming the patient...(speak to your doctor about this conclusion's merit)--

 best wishes, john kruschke--




Tuesday, February 7, 2012

--window r-value calc--



   window r-value calc--


   r-value per-atmo, per-barrier, per-volume calc--

 r-value of barrier 1, + atmo # 1, + barrier # 2 =  r-value per-cubic inch,  x  cubic inches  =  total r-value

more later--

         --out of time at the library today.... best wishes, john kruschke--

Monday, February 6, 2012

-- r-value per atmosphere window/building material calc--

  this will be fun...i seem to have torn the back cover off the book for this one--

  the concept--

    i will be dividing the "thermal variance", by the r-value of the material, or atmospheres, and multiplying by the number of square inches, to arrive at the "total predicted r-value" for the "hypothetical" space of the room( at a suggested "temperature differential")--

     --i may calc for psi( sea-level) on a different one, as this calc is for something already built, to be used to improve what is there, and to know how much good a person's efforts will make--


   calc to convert r-value to percent( exponent)--

                ( random)
  ( r-#)      ( r-values)   x   ( thermal modifier)   =    ( r-value exponent)
    r-1         0.0921      x          100                 =               9.21
    r-2         1.925        x           100                =           192.50
    r-3         2.936        x           100                =           293.80           ( add r-value)
    r-4         4.219        x           100                =           421.90      ( exponents together)
___________________________________________________________________
                                                                                 917.41 = ( r-value exponent total)

--divide "r-value exponent total", by each "r-value exponent", to derive "uncorrected r-value percent"--

   r-value exponent-to-percent calc( uncorrected)--

  ( r-value exponent total)  %    ( r-value exponent)   =   ( un-corrected r-value percent)
             917.41                %             9.21                =                 99.61021
             917.41                %         192.50                =                   4.76577
             917.41                %         293.80                =                   3.12257
             917.41                %         421.90                =                   2.17447

     r-value percent calc( corrected)--
                                                                                                  ( corrected)
      ( thermal modifier)   x   ( uncorrected r-value percent)  =    ( r-value percentile)
               100               x               99.61021                     =          1.00391
               100               x                 4.76577                     =        20.98297
               100               x                 3.12257                     =        32.02490
               100               x                 2.17447                     =        45.98822


   r-value percent-to-watts-lost per-minute calc( un-corrected)--  

      ( total watts lost)                    ( corrected)                               ( uncorrected watts)
  ( per-min, per-cubic in)    %    ( r-value percent)   =     ( lost per-min, per-cubic inch, per-medium)
            9.904                   %          1.0039            =                           9.86552
            9.904                   %        20.98297          =                           0.47200
            9.904                   %        32.02490          =                           0.30926
            9.904                   %        45.98822          =                           0.21536


   r-value percent-to-watts-lost per-minute calc( corrected)--   ( decimal putting system)

          ( uncorrected)                                                                 ( corrected)
      ( watts lost per-min,)                                                     ( watts lost per-min, )
  ( per-cubic in, per-medium)  x  ( thermal modifier)  =      ( per-cubic in, per-medium)
             9.86552                  x            100              =                   986.552
             0.47200                  x            100              =                     47.200
             0.30926                  x            100              =                     30.926
             0.21536                  x            100              =                     21.536
_____________________________________________________________________
                                          ( add all values together to get)
                                             ( total watts lost, per-min)
                                                   ( per-cubic inch)             =     1086.214

decimal putting principal--

 --"two problems, increased/decreased by equal amounts remain congruent"--

note--

  in the above math, crunched, i have used a "modifier", by dividing, then multiplying, dividing, and then multiplying again, so we have come "full-circle"( mathematically), and regained a congruent situation...

circular mathematical principal--

-if values are "crunched" equally, into a different form( via a modifier), and then "crunched-back" again with an "inverse-modifier"( multiply/divide), the values remain congruent, despite changes in the labels of said values( foot-pounds, newtons, ect...)--

note--

describing the math above in a simpler way...

  i am saying that often times you are required to "sync" to variables in a problem, and this can be done by utilizing a "modifier", if a single "modifier" gets the numbers generated close to "actual", as is the case if "syncing" the pitch of something in degrees, and correlating it to "percent of load bearing ability"...your initial modifier might work close to the right numbers...like 50 degrees = 50 percent less load on the roof, yet, you might have to utilize a second modifier, to the initial modifiers "exponent", to "sync" the two variables in the problem...pitch in "degrees", and "percentage of load bearing requirement"( meaning, if you divide all the numbers, and then subtract an equal amount from the "exponent" of the first modifier, the resulting numbers are still "congruent", with the original variables...like a "bell-curve", or other math pattern, that must remain expressed, in the answer of the problem)--


       watts lost per-minute w/ volume calc--     

   ( watts lost per-min, )       ( cubic inches)         ( watt loss per-min)
     ( per-cubic inch)       x    ( total volume)   =     ( of total volume)
         1086.214            x         1000            =       1,086,214.00

summary--

 this calc shows a way to know the watts lost per-min, for each r-value( layer of insulation), in the home...using this, a person can be sure of what is doing the most good, and if another layer is added, of a known "watt per-minute value", then the "watts prevented" from being lost, also is known, as the numbers go negative from the original watt-loss...i believe this can be used to derive the minutes saved, going from temp-2( high temp), to temp-1( low temp), and equalization--

note--

   also, watt loss per-minute, per-total volume, can be multiplied by 60, to get per-hour, then by 24, to get per-day, and by 365, to get per-year, watts lost...this number can then be crunched to kilowatts, to get an expected bill for the year, after improvements...


the way--

    subtract "watts lost per-min", of r-value of improvement( watts prevented), from "total watts lost per-min"( before improvement), to get  "total watts prevented", and "time to equalization prevented", from the improvement, or improvements--

  --"corrected total watts prevented" - room total watts =  "total watt loss prevented per-min"--

       calc complete...happy time--    :o)

   best wishes, john kruschke...






Thursday, February 2, 2012

--r- value per atmosphere calc--

 an epiphany--

   i re-crunched this one last night, looks good( better than my first effort)...

          --i'm tearing the cover off the book for this one--

 the objective--

     for now, i am mostly interested in the "temperature-differential", and the time it takes for the "temperature-differential" to equalize, in order to derive the watts needed to heat a given space, for a home that is already built( knowing the "r-value" of your living room, den, bedroom, ect..., is where i am going to start)--

the way--

    by measuring the "temp-differential" per-room, and adding up the btu/watt loss per-minute, calcing per-hour, then per-day, and per-month after that, you can convert the data to kilowatts...to determine the bill--

   --i will get into "calcing" "r-value", per-building material, later--

note-1--

    also, i might mention, that the windows in the home, are where i feel the highest loss is present( i believe a wall you cannot see though, has a lower "r-value" than a window), and that the cold air, convects into the home, through these portals...mainly--

note-2--

   this calc method, makes the psi of air pressure, moot, as the "thermal-variance", already shows the pressure, due to the variance being derived from on-site temps...

      r-value per-atmosphere calc--

                                                        ( # of collisions)
                                                         ( per-second)           
     ( cubic inches)   +  ( humidity)     -      ( temp)        =   ( corrected r-value)   happy-time--  :o)
              1             +      10            -           70            =            59/60              

note--

    the above material displays the "air/humidity insulatory-dynamic principal" i feel is "in-play", in all creation...


 air/humidity insulatory-dynamic principal--

    --the weight of water( h2o), within suspension in the air( humidity), reduces the "working-temp" of the air being studied( the humid air, behaves as dry air, at a lower temperature)--


    r-value correction calc( humidity)--

   --( humidity affects thermal exchange, slowing it, from the air's water content storing temp)--

      ( grams)              ( cubic inches)
    ( moisture)   %     ( volume of air)    =     ( humidity)
          10         %              1                =          10

   
      r-value thermal variance calc--

        ( degrees)             ( degrees)
     ( lowest temp)       ( highest temp)                 ( degrees)
        ( temp-1)       -     ( temp-2)         =    ( thermal variance)         
            48f           -         68f              =               20f

                                                                    ( degrees passed through)
         ( degrees)                                       ( medium-- per-min, per-cubic inch)
    ( thermal variance)  x    ( per-sec)    =            ( uncorrected r-value)
               20f              x        60         =                      1200

                                                            ( degrees passed)
     ( degrees per-min)   x    ( sec)   =    ( per-hour, per-cubic inch)
             1200             x        60     =              32,000

          ( degrees passed)                                        ( degrees passed)
    ( per-hour, per-cubic inch)   x    ( hours)   =     ( per-day, per-cubic inch)
                32,000                  x        24        =               768,000

     --multiply cubic inches of room, by per-min, or per-day, to derive degrees lost per-volume--

      thermal volume lost per time-period calc--

          ( inches)                  ( inches)               ( sq inches)
      ( room width)    x    ( room length)    =   ( floor-space)  
             10             x            10              =         100

       ( sq inches)                 ( inches)               ( cubic inches)
     ( floor-space)    x     ( ceiling height)   =    ( total volume)
            100            x             10             =          1000

          ( degrees passed)                 ( cubic inches)             ( degrees passed)
     ( per-day, per-cubic inch)    x     ( total volume)   =     ( per-day, per-volume)
                768,000                 x          1000            =             768,000,000

    convert to "r-value" to describe "temp-differential"--??


     thermal variance-to-watts, r-value calc--

           ( degrees)                                                ( temperature-differential in watts)
     ( thermal variance)   %  ( watts per-min)   =              ( watt-differential)
                20               %            1                =                        20

     ( watt-differential)   x   ( 1 watt per-min)  -   ( humidity)   =     ( watts lost per-min)
                  20            x        0.0048           -       10          =            -9.904

   ( watts lost per-min)  x  ( minutes)  =    ( watts per-hour lost)
          -9.904              x       60        =            594.24

   ( watts lost per-hour)  x   ( hours)  =     ( watt-hours lost per-day)
            594.24              x      24       =               14261.76
   
     calc to btu's--

      important factors for calc--

      1)--1 watt hour = 3.413 btu's
      2)--3.413  % 60 = btu's per-min  ( .05688)
      3)--watt hours  %  0.293071  =  btu hrs
      4)-- btu hrs  %  60  =   btu's per-min
      5)--1 watt = 0.00488 btu's (more later)

    take btu's ( lost) per-min  %  "total btu's" in volume of room  =  time required to equalize "temp-differential"( for room to cool)--

    temp-differential/time to thermal equalization calc--

                                            ( cubic inches)                  ( thermal minutes)
  ( watts lost per-min)   %   ( total volume)  =     ( for temp-differential equalization)
           -9.904              %          1000           =                  100.96931

             ( thermal minutes)                                                           ( thermal hours)
    ( for temp-differential equalization)   %   ( minutes)   =      ( for temp-differential equalization)
                100.96931                          %        60        =                     1.68282

  good-to-go...  :o)

      calc for time to heat a given space--

        ( inches)                   ( inches)                ( sq inches)
    ( room width)     x     ( room length)    =    ( floor space)
           10             x            10              =         100

     ( sq inches )                 ( inches)               ( cubic inches)
    ( floor space)    x      ( ceiling height)  =     ( total volume)
         100             x               10            =          1000

     ( degrees)       ( degrees)            ( uncorrected)
     ( temp-1)   -   ( temp-2)   =    ( thermal variance)
         50        -         70         =             20

   --room is already at temp-1 so the calc must correct for the starting temp--

   calc for thermal variance correction--

       ( degrees)
    ( uncorrected)                                      ( degrees)
       ( temp-2)       -   ( humidity)   =     ( corrected temp-2)
            70             -        10          =             60

          ( degrees)                ( cubic inches)               ( btu's)
   ( corrected temp-2)   x   ( total volume)    =    ( thermal total)
              60                 x         1000            =         60,000

                                                                             ( degrees)
        ( degrees)                                                      ( modified)
  ( thermal variance)   x   ( thermal modifier)  =   ( thermal variance)
             20               x           1000              =          20,000

                                    ( degrees)                       ( btu's)
      ( btu's)                    ( modified)                  ( corrected)
 ( thermal total)   -   ( thermal variance)   =     ( thermal total)
      60,000        -            20,000             =         40,000  


       ( btu's)      %    ( sec)   =   ( thermal-seconds)
       40,000     %       60     =        666.66666

      ( thermal-seconds)    %    ( sec)   =   ( thermal minutes)      ( total time to heat room)
          666.66666           %      60      =        11.11111             ( to 60 degrees-f from 50-f)

    --i think i like the loss in watts...calc degrees to watts, to compare data gathered to "watts/watt-hours expended", to compare with your bill, kilowatt measuring device, or stop-watch--
    

 best wishes, john kruschke--




Wednesday, February 1, 2012

--water/fuel vapourization thermo-dynamic factors--


 the issue--

   i believe the reason a car requires a choke in the morning, to start well, is not from there being more air in the charge( air-fuel mixture), due to the cold air having less molecules in it...

   but...instead, i suggest that there is, in fact, less gasoline that the air can hold in suspension( vapourized), from the changing "dew-point", of the atmosphere in the vehicle's intake manifold( causing fuel "pooling" in the intake), yes, the air has less collisions per-second( see "molecular harmonics" post), but not less molecules per-cubic inch( i believe air not to be any lighter if the temperature is increased) for this reason, more gas must be added to the mixture, to create a charge( vapourized fuel), rich enough, to allow fuel/air to reach the combustion chamber, in proper proportions, and ignite...( without the fuel "dropping out of suspension", in the vapour)--

   this principal is shown in water vapour as well, with the concept of a "dew-point", i feel that fuel vapours also behave in this manner, and that there is a "fuel vapour dew-point", with similar tendencies as that of water--

  --the numbers--

    liquid "dew points"( thermo-dynamics) calc--


     (grams x milliliter)
       (root liquid's)               (cubic inches)
          (weight)          %           (of air)        =         (humidity)
           10 x 1           %                1           =               10


                                     (# of collisions)                          (root liquid's)
                                        (per sec)                             (condensate temp)
           (humidity)    +        (temp)        -       (psi)    =      (dew-point)
                10          +          20f           -         1      =           29f


    i feel that lower numbers of collisions per-second( slower molecular movement), causes there to be larger gaps between the moving molecules, reducing molecular surface tension( see "molecular harmonics" post), causing the heavy "root liquid's" molecules to "drop out of suspension" in the vapour( at lower temps), or at higher temps, due to the weight of each droplet in suspension being too heavy to remain aloft( vapourized)--

   also, i feel that if greater psi( pressure), is put on the air , or atmosphere, suspending a "root liquid's" weight( per-cubic inch), the additional pressure compresses the "root liquid" from the suspension( vapour), to condensate--

    --this calc shows the "dew point"( temp of condensate), of any liquid, in suspension( vapour), and may be of use to auto makers, suppliers, or users, of gasoline/diesel fuels( quantifying the amount of ethanol that may added to gas, with good vapourization, is an example)--

  i have not "real-world" studied this calc yet, but it looks good on paper...

  --best wishes, john kruschke--

 (cs)