Monday, February 6, 2012

-- r-value per atmosphere window/building material calc--

  this will be fun...i seem to have torn the back cover off the book for this one--

  the concept--

    i will be dividing the "thermal variance", by the r-value of the material, or atmospheres, and multiplying by the number of square inches, to arrive at the "total predicted r-value" for the "hypothetical" space of the room( at a suggested "temperature differential")--

     --i may calc for psi( sea-level) on a different one, as this calc is for something already built, to be used to improve what is there, and to know how much good a person's efforts will make--


   calc to convert r-value to percent( exponent)--

                ( random)
  ( r-#)      ( r-values)   x   ( thermal modifier)   =    ( r-value exponent)
    r-1         0.0921      x          100                 =               9.21
    r-2         1.925        x           100                =           192.50
    r-3         2.936        x           100                =           293.80           ( add r-value)
    r-4         4.219        x           100                =           421.90      ( exponents together)
___________________________________________________________________
                                                                                 917.41 = ( r-value exponent total)

--divide "r-value exponent total", by each "r-value exponent", to derive "uncorrected r-value percent"--

   r-value exponent-to-percent calc( uncorrected)--

  ( r-value exponent total)  %    ( r-value exponent)   =   ( un-corrected r-value percent)
             917.41                %             9.21                =                 99.61021
             917.41                %         192.50                =                   4.76577
             917.41                %         293.80                =                   3.12257
             917.41                %         421.90                =                   2.17447

     r-value percent calc( corrected)--
                                                                                                  ( corrected)
      ( thermal modifier)   x   ( uncorrected r-value percent)  =    ( r-value percentile)
               100               x               99.61021                     =          1.00391
               100               x                 4.76577                     =        20.98297
               100               x                 3.12257                     =        32.02490
               100               x                 2.17447                     =        45.98822


   r-value percent-to-watts-lost per-minute calc( un-corrected)--  

      ( total watts lost)                    ( corrected)                               ( uncorrected watts)
  ( per-min, per-cubic in)    %    ( r-value percent)   =     ( lost per-min, per-cubic inch, per-medium)
            9.904                   %          1.0039            =                           9.86552
            9.904                   %        20.98297          =                           0.47200
            9.904                   %        32.02490          =                           0.30926
            9.904                   %        45.98822          =                           0.21536


   r-value percent-to-watts-lost per-minute calc( corrected)--   ( decimal putting system)

          ( uncorrected)                                                                 ( corrected)
      ( watts lost per-min,)                                                     ( watts lost per-min, )
  ( per-cubic in, per-medium)  x  ( thermal modifier)  =      ( per-cubic in, per-medium)
             9.86552                  x            100              =                   986.552
             0.47200                  x            100              =                     47.200
             0.30926                  x            100              =                     30.926
             0.21536                  x            100              =                     21.536
_____________________________________________________________________
                                          ( add all values together to get)
                                             ( total watts lost, per-min)
                                                   ( per-cubic inch)             =     1086.214

decimal putting principal--

 --"two problems, increased/decreased by equal amounts remain congruent"--

note--

  in the above math, crunched, i have used a "modifier", by dividing, then multiplying, dividing, and then multiplying again, so we have come "full-circle"( mathematically), and regained a congruent situation...

circular mathematical principal--

-if values are "crunched" equally, into a different form( via a modifier), and then "crunched-back" again with an "inverse-modifier"( multiply/divide), the values remain congruent, despite changes in the labels of said values( foot-pounds, newtons, ect...)--

note--

describing the math above in a simpler way...

  i am saying that often times you are required to "sync" to variables in a problem, and this can be done by utilizing a "modifier", if a single "modifier" gets the numbers generated close to "actual", as is the case if "syncing" the pitch of something in degrees, and correlating it to "percent of load bearing ability"...your initial modifier might work close to the right numbers...like 50 degrees = 50 percent less load on the roof, yet, you might have to utilize a second modifier, to the initial modifiers "exponent", to "sync" the two variables in the problem...pitch in "degrees", and "percentage of load bearing requirement"( meaning, if you divide all the numbers, and then subtract an equal amount from the "exponent" of the first modifier, the resulting numbers are still "congruent", with the original variables...like a "bell-curve", or other math pattern, that must remain expressed, in the answer of the problem)--


       watts lost per-minute w/ volume calc--     

   ( watts lost per-min, )       ( cubic inches)         ( watt loss per-min)
     ( per-cubic inch)       x    ( total volume)   =     ( of total volume)
         1086.214            x         1000            =       1,086,214.00

summary--

 this calc shows a way to know the watts lost per-min, for each r-value( layer of insulation), in the home...using this, a person can be sure of what is doing the most good, and if another layer is added, of a known "watt per-minute value", then the "watts prevented" from being lost, also is known, as the numbers go negative from the original watt-loss...i believe this can be used to derive the minutes saved, going from temp-2( high temp), to temp-1( low temp), and equalization--

note--

   also, watt loss per-minute, per-total volume, can be multiplied by 60, to get per-hour, then by 24, to get per-day, and by 365, to get per-year, watts lost...this number can then be crunched to kilowatts, to get an expected bill for the year, after improvements...


the way--

    subtract "watts lost per-min", of r-value of improvement( watts prevented), from "total watts lost per-min"( before improvement), to get  "total watts prevented", and "time to equalization prevented", from the improvement, or improvements--

  --"corrected total watts prevented" - room total watts =  "total watt loss prevented per-min"--

       calc complete...happy time--    :o)

   best wishes, john kruschke...






No comments:

Post a Comment